Squarefree factorisations
C_K_Yang ironman353 liuguangxi zimpha a_forsteri jtnydv25 Min_25 C3PO Philippe_57721 gerrob sinan hervas benito255 lesnik7 nielkh
Public  08/12/16  6xp  Programming  55.6% 
Consider the number $ 420 $
It can be decomposed in product of 2 squarefree factors in 4 different ways:
$ 2 \times 210 $
$ 6 \times 70 $
$ 10 \times 42 $
$ 14 \times 30 $
Let $ d(n) = \textrm{ number of pairs } (x,y) \textrm{ such as x,y squarefree, }x \times y = n \textrm{ and } x \le y $
Find $\displaystyle\sum_{k = 1}^{20,000,000} d(k) $
[My timing: 45 sec]
It can be decomposed in product of 2 squarefree factors in 4 different ways:
$ 2 \times 210 $
$ 6 \times 70 $
$ 10 \times 42 $
$ 14 \times 30 $
Let $ d(n) = \textrm{ number of pairs } (x,y) \textrm{ such as x,y squarefree, }x \times y = n \textrm{ and } x \le y $
Find $\displaystyle\sum_{k = 1}^{20,000,000} d(k) $
[My timing: 45 sec]
New Members
 nebula001 2d:21h
 PeterisP 1w
 Arun_CoDeR 1w
 hankim 2w:3d
 chfmoe 3w
Fresh Problems

Kimberling Sequence 1d:2h
solved by 6 
Palindromic Infinite Sequence 1w:1d
solved by 3 
Convergents of infinite sum 1w:5d
solved by 5 
Permutation Order II 2w:1d
solved by 8 
Integral circle packings 2 2w:4d
solved by 3