Problem #468

Permutation Order II
Public 02/08/18 7xp Programming 88.9%

See Problem 467 - Permutation Order I for definitions.

Let $ \mathfrak{A}(n,p)$ be the number of permutations of [1..n] with order p

We have:
$ \mathfrak{A}(7, 1) = 1$
$ \mathfrak{A}(7, 2) = 231$
$ \mathfrak{A}(7, 3) = 350$
$ \mathfrak{A}(7, 4) = 840$
$ \mathfrak{A}(7, 5) = 504$
$ \mathfrak{A}(7, 6) = 1470$
$ \mathfrak{A}(7, 7) = 720$
$ \mathfrak{A}(7,10) = 504$
$ \mathfrak{A}(7,12) = 420$

Find the last 10 significant (before trailing 0s) digits of $\mathfrak{A}(1000, 641)$

[My timing: < 100 ms]



You need to be a member to keep track of your progress.
Register


Time may end, but hope will last forever.

Other Challenge Sites

Contact

elasolova
[64][103][109][97][105][108][46][99][111][109]